D4

AVERAGE ATOMIC MASS PROBLEMS

1. Neon has two isotopes: Ne-20 (having a mass of $\mathbf{2 0} \mathbf{a m u}$) and $\mathrm{Ne}-22$ (having a mass of $22 \mathbf{a m u}$). Given the following abundances of these isotopes in nature, what is the average atomic mass of neon?

Mass number	Abundance
$\mathrm{Ne}-20$	90%
$\mathrm{Ne}-22$	10%

2. What is the average atomic mass of silicon given the following abundance information on the isotopes of silicon?

Mass number	Abundance
$\mathrm{Si}-28$	90%
$\mathrm{Si}-29$	5%
$\mathrm{Si}-30$	5%

3. What is the average atomic mass of hafnium given the following abundance information on its isotopes?

Mass number	Abundance
Hf-176	5%
Hf-177	20%
Hf-178	30%
Hf-179	15%
Hf-180	30%

4. Calculate the atomic mass of potassium if the abundance atomic masses of the isotopes making up its naturally occurring samples are as given below.

Isotope	Relative abundance		Atomic Mass
potassium-39	95%		38 amu
potassium-41	5%		40 amu

